Solving the Challenge Problems Using Expert Knowledge Theory & Methods

Jane M. Booker, ESA-WR Laura A. McNamara, D-1

Challenge Problems Vs. Reality

- •Challenge problems are too well defined relative to complex physical problems.
- •Experts should be able to determine the response form (e.g., intervals) according to their knowledge, thinking, and problem solving.
- •Experts may have knowledge about relative likelihoods of values within interval estimates.
- •Sources of uncertainties are limited here (e.g., no extrapolation).
- •Numerical interval answers are assumed; often initial expert estimates are linguistic.
- •Problems are constrained with fixed assumptions.

Elicitation Principles

- •Utilize terms and methods from the way experts think, work and problem solve.
- •Provide constant feedback to experts (especially for expert resolution).
- Use bias minimization techniques.
- •Use verbal protocol and verbal probe (get experts to think aloud and use the terms and work within the culture).
- •Use the decomposition principle: experts learn more and solve problems better if the problem is broken down into finer details.
- •Remember all information is conditional and some of these conditions relate to how expert solve problems and the level of detail (resolution or granularity) they think.
- Pilot test questions.
- Document assumptions, cues, heuristics, problem solving.
- •Establish the uncertainty and analysis reference or standard as early as possible.

Cognitive Biases

Bias: A skewing from a standard or reference point (reality).

Anchoring Experts cannot move from preconceptions.

Inconsistency Confusion, e.g. differing assumptions or definitions, can lead to inconsistency. Memory problems and fatigue also contribute.

Underestimation of Uncertainty We often think we know more than we really do.

[Classic (and doadly) example is the Titanial

[Classic (and deadly) example is the Titanic].

Availability Depending upon personal experience, experts cannot accurately account for rare events.

Motivational Biases

Bias: Degrade the quality of elicited knowledge.

Group Think Group social pressure to slant responses or silently acquiesce to what they believe will be acceptable to the group.

[Classic (and deadly) example is the Bay of Pigs].

Misinterpretation Inadequate translation of knowledge into response.

Wishful Thinking Experts' hopes influence their judgment.

Impression Management Responding according to politically correct interpretations.

Problem 1: Single Expert Elicitation

- Elicit ranges for parameters A & B.
- Display resulting responses for review
- Probe expert's reasoned reactions
- •Modifications:
 - -Parameter values only
 - -Responses only (if inverse is possible)
 - -Both (iterative)

An Expert's Elicitation of Estimates: Problem 1 Initial Estimate

Sources of Expert Disagreement: A True Example (Mirrors 3c)

- Individual elicitation with experts results in broad disagreement; categorized by level of experience (seniors versus novices).
- Responses (minus identifiers) discussed with all experts.
- Hypothesis: Level of experience will explain
 - New elicitation tested hypothesis with problem-solving exercise and verbal report
- Conclusion: Novices used different sources of information, drew on less information, and made different assumptions than seniors.

An Expert's Elicitation of Estimates: Problem 1 Initial + Iteration 1

Expert cuts initial estimates in half.

An Expert's Elicitation of Estimates: Problem 1 Initial + Iterations 1 & 2

Expert adjusts lower bounds.

An Expert's Elicitation of Estimates: Problem 1 Final Iteration

Expert expands uncertainty.

Problem 3c: Multiple Expert Elicitation

For each expert:

- Elicit ranges for parameters A & B.
- Display resulting responses for review
- Probe expert's reasoned reactions
- Make modifications

Uncertainty in Multiple Expert Resolution

Non overlapping results indicate unresolved expert differences AND/OR reflect the true (current) state of the unknown (epistemic uncertainty).

Resolution of differences or reduction in uncertainty requires additional information.

Problem 3c: Multiple Expert Resolution

- Analyst examines multiple expert results
- For each expert, probe on differences
 - -Solving the same problem?
 - -Differing assumptions?
 - -Differing conditions?
 - -Underestimation of uncertainty?
- Analyst examines new results
- Experts examine all results
 - -Reach consensus together OR
 - -Make individual adjustments

Four Experts' Elicitation of Estimates: Problem 3c Initial Estimate

Four Experts' Elicitation of Estimates: Problem 3c Initial + Iteration 1

Novices
(1 & 2) cut
estimates in
half based
upon shared
additional
information
from
seniors.

Four Experts' Elicitation of Estimates: Problem 3c Initial + Iterations 1 & 2

Novices (1 & 2)expand and shift estimates based upon shared problem solving information from seniors.

Four Experts' Elicitation of Estimates: Problem 3c Final Iteration

Novices (1 & 2) and senior (4) expand estimates based upon shared aging assumption information from senior **(3)**.

They Just Don't Agree

DOCUMENT, DOCUMENT expert reasoning to determine aleatory vs. epistemic uncertainty

Are Experts...

- Drawing on different information/data?
- Missing information?
- Not solving the same problem?
- More/less experienced with problem?
- Working in an emergent area of knowledge?

Elicitation

- Identify potential cognitive bases for disagreement
- Redesign, re-administer elicitation
- Disagreement may not be resolvable because wide uncertainty REALLY exists.

Elicitation for Resolution

- Use evidence to develop new elicitation
- From Example: Modified Delphi could work
 - Share responses anonymously among participants to ensure that all consider same information
- Group elicitation
 - Prone to groupthink bias
- Individual interview: Challenge
 - "Borrow" respondents evidence to probe reasoning during interview

Combining Multiple Experts Estimates

- Expert supplied weights
 - -Each expert rates others
 - -Self weights
- Analyst supplied weights
 - -Maximum entropy solution
 - -Other information
- Decision maker supplied weights
 - -Maximum entropy solution
 - -Other information

References

J.M. Booker, T.R. Bement, M.A. Meyer, W.J. Kerscher, III "PREDICT: A New Approach to Product Development and Lifetime Assessment Using Information Integration Technology," to appear in *Handbook of Statistics: Statistics in Industry* (Rao and Khattree, editors), 2002.

M.A. Meyer, J.M. Booker, *Eliciting and Analyzing Expert Judgment: A Practical Guide*, Society of Industrial and Applied Mathematics, Philadelphia, PA, 2001.

M.A. Meyer, J.M. Booker, T.R. Bement, developers of "PREDICT-A New Approach to Product Development," 1999 R&D 100 Award winner, *R&D Magazine*, Vol. 41, p 161, September, 1999. Los Alamos National Laboratory document, LALP-99-184, August, 1999.

P. Ayton and E. Pascoe, "Bias in Human Judgment Under Uncertainty," *The Knowledge Engineering Review*, 10: 1, 21-41, 1995.